FotobotHW DUO

User's guide

Content

Introduction	3
Compatibility	3
Inputs	3
Outputs	3
Serial communication	3
Power supply	3
Other	4
Installation	5
Installation using Debian package	5
Manual installation	5
Connectors	7
Serial ports	8
Fuses	8
EEPROM write protection	8
EEPROM address	9
Battery	9
Potential-free inputs	10
Open-collector outputs	11
Relay outputs	12
Analog inputs	13
Voltage 0-10 V	13
Current 0-20 mA	13
Sensor connection	14
Real Time Clock	15
Serial ports	16
Thermometers	17
Specification	18
Fuses	18
Revision history	19

Introduction

Compatibility

The FotobotHW-DUO board is compatible with BeagleBone computers:

- BeagleBone Black
- BeagleBone Industrial
- not tested with BeagleBone Wifi or BeagleBone Green

The FotobotHW-DUO board do not collide with other peripheral placed in BeagleBone Black (HDMI, eEEMC).

Inputs

- 2× potential-free inputs for buttons, relays contact etc.
- 2× analog inputs 0-10 V or 0-20 mA
- One-wire bus for DS18B20 thermometers

Outputs

- 2× open collector output
- 2× switching relay

Serial communication

- 2× RS232, only RXD and TXD signals
- Output voltage typical ± 9 V, minimal ± 5.5 V with load impedance 3 k Ω

Power supply

– 7-24 V DC, max. 1.25 A

Other

– Real time clock with battery backup

Installation

The installation process expects that Debian 9 with Linux kernel 4.4 and uBoot overlays are used:

https://beagleboard.org/latest-images

Installation using Debian package

Download debian package for the FotobotHW-DUO board:

https://www.hobrasoft.cz/en/hardware/duo

Install the package:

dpkg -i hobrasoft-duo-1.0.0-armhf.deb

Then reboot your BeagleBone. After reboot the board should be detected and initialized.

Manual installation

Download firmware for the FotobotHW-DUO board:

https://www.hobrasoft.cz/en/hardware/duo

Compile the firmware in your BeagleBone using dtc and copy the dtbo file to /usr/firmware:

dtc -q -O dtb -@ -o HOBRASOFT-DUO-00A0.dtbo HOBRASOFT-DUO-00A0.dts cp HOBRASOFT-DUO-00A0.dtbo /usr/firmware

Warnings Node /fragment@0 has a unit name, but no reg property can be ignored safely.

Edit the /boot/uEnv.txt file, check that the u-Boot overlays are enabled:

enable_uboot_overlays=1

Then reboot the system. After reboot the board should be detected and initialized.

Real time clock (RTC) uses rtc_mcp7941x kernel module. Initialization should be made during the system startup:

echo mcp7941x 0x6f > /sys/class/i2c-adapter/i2c-2/new_device

Then the RTC can be accessed using /dev/rtc1.

Connectors

Hobrasoft FotobotHW-DUO User's guide

	Input	Output	Pins	Control
GND				
DIO1	gpio67	gpio68	P8.8, P8.11	
DIO0	gpio66	gpio45	P8.7, P8.10	
GND				
DS18B20			P8.9	
3.3 V				
GND				
AN1	AIN1		P9.39, P9.27	gpio115: 0=0-10V, 1=0-20mA
AN0	AIN0		P9.40, P9.23	gpio49: 0=0-10V, 1=0-20mA
R2 NC				
R2 COM		gpio50	P9.14	
R2 NO				
R1 NC				
R1 COM		gpio51	P9.16	
R1 NO				

Serial ports

	Pins	Device
RS232-A	P9.26, P9.24	/dev/ttyS1
RS232-B	P9.22, P9.21	/dev/ttyS2

The system device names are /dev/ttyS1 and /dev/ttyS2 usually. They depends on distribution and Linux version used.

Fuses

F1	AN1	80 mA
F2	AN0	80 mA
F3	VCC	1.25 A
F4	DIO0	80 mA
F5	DIO1	80 mA
F6	DS18B20 signal	80 mA
F7	DS18B20 VCC 3.3 V	80 mA

EEPROM write protection

All open	EEPROM protected
1-2	EEPROM write enabled

2 – 3 EEPROM write protection controlled by gpio3_21 (P9.25)

Note: The EEPROM is programmed during production. Do not change it's content unless you know what you are doing.

EEPROM address

A0	A1	A2	Address
open	open	open	57 - default
close	open	open	56
open	close	open	55
close	close	open	54

Battery

Use CR2032 battery for RTC backup.

Potential-free inputs

Potential-free inputs can be used to connect buttons, relay contacts etc. Inputs share their connector pins with outputs. The input and output can be used at the same time with limitation. If you set the digital output to 1, then the digital input will be always read as 0.

Export the GPIO pins for the inputs and outputs and set the pins. This should be made only once when starting your application:

echo	66 >	/sys/class/gpio/export	#	DI00	input
echo	67 >	/sys/class/gpio/export	#	DI01	input
echo	in >	/sys/class/gpio/gpio66/direction			
echo	in >	/sys/class/gpio/gpio67/direction			
echo	68 >	/sys/class/gpio/export	#	DI00	output
echo	45 >	/sys/class/gpio/export	#	DI01	output
echo	out >	/sys/class/gpio/gpio68/direction			
echo	out >	/sys/class/gpio/gpio45/direction			
echo	0 > /	sys/class/gpio/gpio68/value	#	0pen	DIOO output
echo	0 > /	sys/class/gpio/gpio45/value	#	0pen	DIO1 output

You can read input 0 using:

cat /sys/class/gpio/gpio66/value

You can read input 1 using:

cat /sys/class/gpio/gpio67/value

Value 1 means that the input is opened. Value 0 means that the input is connected to ground.

Open-collector outputs

Outputs share their connector pins with outputs. The input and output can be used at the same time with limitation. If you set the digital output to 1, then the digital input will be always read as 0.

Export the GPIO pins for the outputs and set the pins. This should be made only once when starting your application:

echo 68 > /sys/class/gpio/export echo 45 > /sys/class/gpio/export echo out > /sys/class/gpio/gpio68/direction echo out > /sys/class/gpio/gpio45/direction You can open the DIO0 collector output using: echo 0 > /sys/class/gpio/gpio68/value You can close the DIO0 collector output using: echo 1 > /sys/class/gpio/gpio68/value You can open the DIO1 collector output using: echo 0 > /sys/class/gpio/gpio45/value You can close the DIO1 collector output using: echo 1 > /sys/class/gpio/gpio45/value

Relay outputs

Export the GPIO pins for the relays and set the pins. This should be made only once when starting your application:

echo 51 > /sys/class/gpio/export echo 50 > /sys/class/gpio/export echo out > /sys/class/gpio51/direction echo out > /sys/class/gpio50/direction

Then you can control relays writing 1 or 0 to value file.

Set the relay 1 on and off:

echo 1 > /sys/class/gpio51/value
echo 0 > /sys/class/gpio51/value

Set the relay 2 on and off:

echo 1 > /sys/class/gpio50/value
echo 0 > /sys/class/gpio50/value

Analog inputs

Analog inputs can measure voltage 0-10 V and current 0-20 mA. The range of each analog input can be set independently.

Export the control GPIO pins. This should be made only once when starting your application:

echo	115 > /sys/class/gpio/export	# AINO
echo	49 > /sys/class/gpio/export	# AIN1
echo	out > /sys/class/gpio/gpio49/direction	
echo	<pre>out > /sys/class/gpio/gpio115/direction</pre>	

Voltage 0-10 V

After initialization switch the analog input to voltage mode:

echo	0 >	/sys/class/gpio/gpio115/value	# AINC	0-10 V
echo	0 >	/sys/class/gpio/gpio49/value	# AIN1	0-10 V

You can read input 0 using:

```
cat /sys/bus/iio/devices/iio:device0/in_voltage0_raw
```

You can read input 1 using:

cat /sys/bus/iio/devices/iio:device0/in_voltage1_raw

The value read has to be converted to voltage:

VOILAGE - VALUE / 4090 LO $ V $

Current 0-20 mA

After initialization switch the analog input to current mode:

echo	1	>	/sys/class/gpio/gpio115/value	# A	INO	0-20 mA
echo	1	>	/sys/class/gpio/gpio49/value	# A	IN1	0-20 mA

You can read input 0 using:

cat /sys/bus/iio/devices/iio:device0/in_voltage0_raw

You can read input 1 using:

cat /sys/bus/iio/devices/iio:device0/in_voltage1_raw

The value read has to be converted to current:

```
current = value / 4096 * 20 [mA]
```

Sensor connection

When using current loop 0-20 mA, connect the *plus* wire of the sesor to VCC and *minus* wire of the sensor to AN1 or AN0 input.

Real Time Clock

Real time clock (RTC) uses rtc_mcp7941x kernel module. The RTC chip is located on i2c bus 0x6f address.

Initialization should be made during the system startup:

echo mcp7941x 0x6f > /sys/class/i2c-adapter/i2c-2/new_device

Write current system date and time to RTC:

hwclock -wu -f /dev/rtc0

Read RTC and set current system date and time:

hwclock -s -u -f /dev/rtc1

When you change the CR2032 battery, you should write current system date and time to RTC again, otherwise you would not be able to read any data from RTC.

Serial ports

There is no need to initialize serial ports. When the system is started with proper firmware, serial ports are initialized automatically.

Ports are labeled as RS232-A and RS232-B. Actual device names depends on Linux version and distribution. Usualy the device are named like this:

	BeagleBone UART	Pins	Device
RS232-A	UART1	P9.26, P9.24	/dev/ttyS1
RS232-B	UART2	P9.22, P9.21	/dev/ttyS2

Thermometers

The bus with thermometers of DS18B20 type can be connected to the device. The number of thermometers is not limited in Linux operating system. The number of reliably working thermometers is limited with bus length and the number of thermometers.

Each thermometer is available in the /sys/bus/w1/devices directory:

```
# ls /sys/bus/w1/devices
10-00080050204b w1_bus_master1
```

You can read temperature using:

cat /sys/bus/w1/devices/10-00080050204b/w1_slave 3c 00 4b 46 ff ff 09 10 2d : crc=2d YES 3c 00 4b 46 ff ff 09 10 2d t=30187

Temperature here is 30.187 °C.

Specification

Power supply		
Voltage	7-24 V DC	
Current	max. 1.25 A	
Open-collector output		
Maximum Voltage	30 V	
Maximum Current	60 mA, fused	
Polarity	GND minus, DIO0 or DIO1 plus, must not be changed	
Digital inputs		
Maximum Voltage	30 V	
Relay output		
Contact rating	8 A, 250 VAC / 24 VDC	
Maximum carrying current	10 A	
Maximum switching voltage	400 VAC / 150 VDC	
Maximum switching power	2,000 VA / 192 W	

Fuses

F1	AN1	80 mA
F2	AN0	80 mA
F3	VCC	1.25 A
F4	DIO0	80 mA
F5	DIO1	80 mA
F6	DS18B20 signal	80 mA
F7	DS18B20 VCC 3.3 V	80 mA

Revision history

- 2018-05-23 Added schematic of sensor connection when using current loop 0..20mA
- 2018-05-30 Fixed gpio addresses for AIN0 and AIN1 mode settings. Section *Thermometers* added.